Advanced polymeric silver nanocomposites
Dr Panagiotis Dallas
Organic and supramolecular chemistry are forms of fine art

Nanoscience and polymer chemistry are direct analogues to civil engineering and architecture
Nanomaterials (dimensions <50 nm) can possess significantly important MAGNETIC, OPTICAL, CATALYTIC AND BIOLOMEDICAL properties and by incorporating them in polymers these properties are inherited in the resulting nanocomposite.

The magnetic and optical properties of materials in the nanoscale are size and shape dependent.

Nanoparticles can be surface functionalized with different organic molecules, e.g. iron oxides with carboxylate anions, noble metals with amines or thiols and even self assemble in perfectly arranged structures which is crucial in the manipulation of the nanoparticles’ properties and in various applications, e.g. development of high density recording media.

Carbon nanotubes (1-D) and fullerenes (0-D)-graphene (2-D) now joins the family (network of carbon double bonds)

Tato prezentace je spolufinancována Evropským sociálním fondem a státním rozpočtem České republiky.
- **Common plastics** (nylon, pmma, polystyrene)

- **Dendrimers**

- **Conductive polymers**

- **Conjugated polymers**

- **Biopolymers**: Carboxymethylcellulose, polysaccharides.\(^5\)

Principle requirements:
- Homogenous dispersion of nanoparticles inside the matrix
- Fine size distribution
- Controlled morphology- going beyond polymer filled nanocomposites

Advantages:
- **Plastics** are transparent (>90% for pmma) and have high tensile strength.
- **Dendrimers** are completely symmetrical and functional macromolecules.
- **Biopolymers** are biocompatible and low cost materials.
- **Block copolymers** tend to self assemble to perfectly organized nanostructures

\(^5\) Travan A. et al. *Biomacromolecules* 2009, 10, 1429
A prescribed morphology is required for the optimum accomplishment of the properties of both components.

Liquid like behavior: Functionalization of the surface with silanes or organic molecules that exhibit a low temperature melting point can lead to meltable or liquid nanoparticles (Nanoscale Ionic Materials-NIMS). [2]

Solubility in various solvents: Nanoparticles lack solubility so appropriate coating makes them either organophilic or hydrophilic.

Polymers, ligands and surfactants control the size and shape growth of the nanoparticles and the surface functionalization of the nanoparticles and polymer chains can manipulate the interparticle distance and interactions. [2]

Utilization of the polymer’s functionality: The polymers functional groups makes them versatile tools for building networks or attaching them on surfaces following a layer by layer approach.

Self assembly of nanoparticles: According to the polymers tendency to form ordered and symmetric patterns. [3]

Tato prezentace je spolufinancována Evropským sociálním fondem a státním rozpočtem České republiky.

Even if the electrochemical polymerization of \textit{pyrrole and aniline} was firstly performed in 1915, the interest expanded after the discovery of conductivity in \textit{polyacetylene} by Prof.H.Shirakawa (1977).

2000: Nobel prize in \textit{Chemistry} awarded to Prof.H.Shirakawa, Prof.A.MacDiarmid and Prof.A.Heeger for their discovery and development of conductive polymers.

\textbf{Electronic conductivity.} Usually it follows a semiconducting behavior, however there are many reports demonstrating a metallic conductivity.

\textbf{Low band gap absorptions}

Metal-insulator transition in polyaniline nanoneedles due to Peierls instability (1-D conductors are intrinsically unstable) \cite{7}

\begin{itemize}
 \item \textbf{Cu, Au, Ag $\sim 10^5$}
 \item \textbf{Polyacetylene $\sim 10^2$ Poly aniline $\sim 1-10$}
 \item \textbf{Polystyrene $\sim 10^{-10}$}
\end{itemize}

\cite{7} © P. Dallas., et al. \textit{Polymer} 2007, 48, 3162
Applications of conjugated and conductive polymers

- **Sensor applications:** The bridging amine units enable them to serve as excellent redox sensors for various organic and inorganic molecules (e.g. NH$_3$, N$_2$O$_4$, glucose)\[^8\]

- Specifically: polyaniline exhibits different oxidation states, each one with different colour and accordingly UV-Visible absorptions. Only the emeraldine salt form is conductive and the presence of the above mentioned species induced immediate changes in the conductivity of the polymer thus serving as excellent sensor.

- Even if they have lower conductivity than conventional metals they have major advantages like low weight, easy preparation and processability, dispersion in various solvents and low cost.

Photovoltaics and solar cells due to low band gap and strong absorptions in the visible light region. \[^9\]

The pioneering work of Prof.Sir Richard Friend (Cavedish Laboratory, University of Cambridge, England) paved the way for Light Emitting Diodes and flat panel screens based on polymers.

Interesting aspects of silver nanoparticles

- **Catalytic activity**: Reduced size increases the fraction of surface atoms which are crucial in catalysis. Ligand- or polymer stabilized colloidal noble metals have been used for many years as catalysts for the hydrogenation of unsaturated organic molecules. Additionally, there is a special interest in developing “green” methodologies for catalyzing organic reactions in aqueous solutions.

- **Antibacterial activity**

- **Surface plasmon resonance**

4th Century AD: Lycurgus cup
1857: Michael Faraday reported the color of colloidal gold

The free electron of the noble metal nanoparticles surface interact with UV and Visible light and the excitations result in different absorptions easily observed in the corresponding spectrum. All these absorptions are size and shape dependent.

Left: Au nanospheres and nanorods (a,b) and Ag nanoprisms (c)

Right: AuAg alloy nanoparticles with increasing Au concentration (d), Au nanorods of increasing aspect ratio (e), and Ag nanoprisms with increasing lateral size (f).

Silver has been known for centuries as an effective antibacterial agent.

1930: Sir Alexander Fleming refines penicillin extracts

Bacteria have evolved mechanisms against these β-lactam antibiotics by hydrolyzing the lactamic ring. On the other hand they have not yet evolved mechanisms of action against silver.
Antibacterial activity of silver

Even if the exact mechanism is not clearly resolved numerous studies indicate the following interactions between silver and bacteria:

- Silver cations bind to negatively charged components of proteins and nucleic acids, thereby causing structural changes and deformations. In general, they are well known to interact with electron donor functional groups like thiols, phosphates, hydroxyls, imidazoles, amines.
- It is considered that silver cations inhibit ATP synthesis via binding to the ATP synthesis enzyme molecules in the cell wall and are even entering the cell and binding with DNA.
- It has been confirmed the incorporation of silver into the cell membrane structure of e-coli cells: it is predominantly constructed from tightly packed lipopolysaccharide (LPS) molecules, which provide an effective permeability barrier. Metal depletion may cause the formation of irregular-shaped pits in the outer membrane.
- Already has been reported the interaction of silver with viruses like HIV-1.

WARNING!

Dangers from over-use of antibacterial agents:
- Allergies
- Asthma
- Weak immune system especially for kids

One-step reduction of silver cations

- The oxidation potential of silver makes it an ideal candidate for the initiation of oxidation polymerization of various monomers, for example, pyrrole or rhodanine.

- Dendrimers can also immediately reduce silver cations towards metal nanocomposites.

Tato prezentace je spolufinancována Evropským sociálním fondem a státním rozpočtem České republiky.
Silver polypyrrole composites: thin films through interfacial polymerization

Left: X-ray diffraction pattern indicating the crystal plains of metallic silver
Right: The % wt percentage of silver in the nanocomposite can be estimated through thermal analysis

Newly developed triazine based polymers

These polymeric networks are synthesized through nucleophilic attach of aromatic diamines like 4,4' bipyridine, 1,4 phenylenediamine or benzidin in the reactive chlorine anions of either cyanuric or phosphonitrilic chloride.

Chlorines are acting as counterbalancing anions and can be exchanged with other or inorganic anions thus expanding the d-spacing of the network (see XRD patterns below).

They can be considered as organic-inorganic hybrid analogues of zeolites and layered double hydroxides.

Cyanuric chloride:
Monosubstituted and planar

Phosphonitrilic chloride:
Disubstituted and the sites have an in and out of plane orientation.

Due to the bridging protonated amine units, the polymer is chemically and electrochemically active. Cyclic voltammetry steps induce significant changes in the color and the oxidation state with an impact in the absorptions of the UV-Visible region.
Optical properties

Polyaniline exhibits a well-established formation of a polaron band which results in three distinct absorptions in the UV-Visible spectra. Similar was the spectrum of benzidin/cyanuric polymer (up). It can be assigned to a partial formation of radical cations in the bridging amine units. EPR studies have been very powerful tools for the study of such materials.

UV-Visible spectrum of 3-D phosphotriazine based polymers before and after oxidations with $S_2O_8^{2-}$.
The macroscopic morphology of the polymers is following the microstructure and the macromolecular chains orientation.

(I) An Electron Microscopy study of the 2-dimensional cyanuric derivative reveals the presence of individual or fused submicrometer grains with a striated surface texture, platy morphology and multi-layered structure at the edges. These features combined are suggestive of a lamella phase.

(II) The 3-dimensional growth of the phosphonitrilic derivatives results in elongated, hollow morphologies.
Synthesis of silver nanocomposites on the surface of triazine based polymers

- Redox reaction with silver cations results in silver nanoparticles that inherit the composites with high antimicrobial activity.
- Amines, amides, imines and thiols are excellent capping agents for noble metals as such the nanoparticles are well attached on the surface of the polymer.

Tato prezentace je spolufinancována Evropským sociálním fondem a státním rozpočtem České republiky.
Future prospects for polymer chemistry

Porous polymeric networks with palladium nanoparticles are promising candidates for hydrogen storage materials and fuel cell technology.\cite{19}

Palladium nanoparticles are excellent absorbents of hydrogen. The porous network of the support will enable the penetration and encapsulation of gas molecules, e.g. hydrogen. Its functional sites can selectively arrange the palladium nanoparticles.

Supramolecular chemistry (Nobel prize in 1987: J.M. Lehn, D.J. Cram, C.J. Pedersen) is a form of (chemical) art that enables the control of non-covalent interactions like hydrogen bonding for the construction of hyper-molecules with advanced functionalities and symmetry. This can light the way for new and advanced polymers that will enable the perfect formation and control of nanomaterials according to their structure.

\textbf{References}

 b) F. Cacialli *Mater. Today* 2004, 24
The use of nanocomposites will reach 45 million kg by 2011. As such the challenges are in the hands of polymer chemists to optimize the performance and the synthesis of new composite materials.

Further reading:

Nanocomposites and interparticle distance control:

Silver/polymer nanocomposites:
VII. C.N.Lok et al *J.Proteome Res.* 2006, 5, 916-924.

Recent advances in polymer science:

Tato prezentace je spolufinancována Evropským sociálním fondem a státním rozpočtem České republiky.
Acknowledgements

- Dr. A. B. Bourlinos
- Prof. R. Zboril
- Dr. D. Jancik
- Dr. D. Niarchos
- Dr. D. Petridis
- Dr. V. Georgakilas

*The original research work presented here, was conducted in both the Centre of Nanomaterial Research of Palacky University and the Institute of Materials Science, NCSR “Demokritos”, Athens, Greece.

Contact information: Dr Panagiotis Dallas, Centre of Nanomaterial Research & Department of Physical Chemistry, Palacky University, Olomouc, Czech Republic. E-mail: panosdallas@gmail.com

Tato prezentace je spolufinancována Evropským sociálním fondem a státním rozpočtem České republiky.